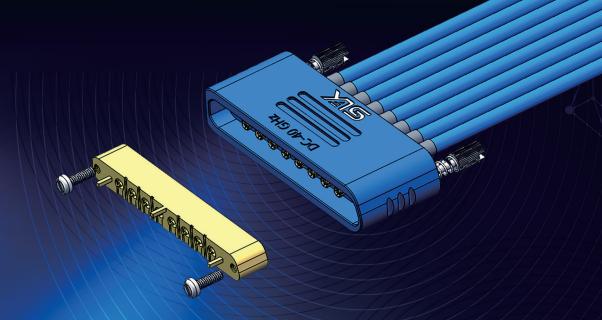


SHENZHEN SUPERLINK TECHNOLOGY CO., LTD.

Address: NO.11,The 5th Industrial Park,Xiacun,Gongming Guangming District,Shenzhen,Guangdong,China,518106 Website: www.slkcorp.com E-mail: sales@slkcorp.com T: +86 755-89814648 F: +86 755-29892599

RF TEST SOLUTION

High-Speed Signal & Optical module Applications



SHENZHEN SUPERLINK TECHNOLOGY CO., LTD.

Our Vision

Establish an international brand and continuously create value for social and human development

Our Mission

Provide value-added products and professional services to society through technology innovation and leadership

Our Core Values

Customer First Keep Promise Continuously Improve Win-Win-Win Cooperation

Industrial Automation

Shenzhen Superlink Technology Co.,Ltd.

SIX

Is founded in 2008, specializing in the development, design and manufacture of interconnection products and solutions.

We own strong scientific research strength, precision equipments and professional management systems. With reliable and consistent quality, we have been recognized by many customers and established long-term strategic partners with many top fortune 500 enterprises globally.

We are professional to provide ODM, OEM and engineering customization services, our related products have been widely used in telecommunications, data communication, test and measurement, medical, industrial automation, military, semiconductor, aerospace and so on. With outstanding technical innovation and professional service as our mission, we provide to customers the most effective interconnection solutions.

Company Milestone

Passed ISO14
Became a me special equipm

2015

- Founded in Dongguah
- Passed ISO9001:2008

2008

- Produced RF cable assemblies
- Obtained UL & CUL certification
- Product frequency up to 20GHz

2010

2009

- Factory moved to Shenzhen
- Became a strategic partner of Volex, Times
- Obtained the first patent

2013

- Passed medical
- certification:ISO13485:2003
- Passed ISO14001:2004
- Product reached 40GHz

 Established clean assembly workshop and constant temperature and humidity machine processing workshop
 Product frequency reach 110GHz

4001:2004 mber of Shenzhen ent association

> Became an IPC member
> Established the TEMP BU
> Passed the national high-tech enterprise certification
> Products reach 67GHz
> Established cable processing workshop

2017

• Obtained Shenzhen Science and Technology Innovation Commission technology center

- Passed IATF16949 :2016
- Obtained 100+ patent certifications

2021

2019

 Approved by Guangdong Province RF microwave passive components and system engineering technology
 research center

• Passed ntellectual property management system certification GB/T29490-2017;

 Successfully developed semiconductor manufacturing and testing products 2022

 Became a member of China Electronic Components Association

03/04

R&D CAPABILITY >>>

Design Ability

- •RF product frequency up to 110GHz •PIM <-125 dBm
- •Product life can be up to 100,000 times •Air tightness
- •Precision test requirement
- •SI simulation test board & test fixture design
- •Machining Parts & Mold Design

Software & Test Equipment

Keysight network analysis, 26.5GHz, 40 GHz, 67GHz, up to 110 GHz
Electrical Test: network analyzer test, 3rd (passive) intermodulation test (PIM), Comprehensive cable test/Contact resistance test/Insulation resistance test/withstand voltage test
Mechanical test: Rockwell 2.0, automatic plug test, push-pull torque test
Environment and reliability testing,salt spray, airtight, aging,impact, IP67/68 waterproof, Failure cause analysis
Ansoft HFSS software

PRODUCTION CAPABILITY >>>>

注明市建取技术有限公

Machining and Assembly Workshop

•The accuracy of STAR CNC from Japan reaches 0.002mm •Has an automated semi-rigid cable bending machine that can make special 3D shapes

•Possess the welding ability of ultra-micro coaxial and low in termodulation radio frequency cable assemblies

•Heat treatment capacity up to 2500 $\ensuremath{\mathbb{C}}$ various encapsulation processes

•Special waterproof production capacity, IP68 airtight level

Cable Workshop

•The constant tension winding production line adopts German ZF hysteresis tension controller and Mitsubishi servo motor. I can wind the core wire in the range of 2-15mm, the pitch range is 0.5-20mmm, and the winding head speed is 0-1000 rpm to ensure the cable in the winding process The consistency, reliability, and stability of performance.

•The knitting machine adopts advanced frequency conversion control (technology which has the characteristics of stepless speed regulation, high-speed knitting, fault alarm, low nose, high reliability, high precision and high strength. Ensure that the binding force and shielding properties of the product during processing meet the standard requirements, and there are no undesirable phenomena such as broken wires and loose weaving.

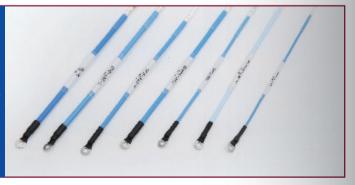
SK

SLK PRODUCTS LIST >>>>

RF connector

- Type: 1.0mm, 1.35mm, 1.85mm, 2.92mm, 7/16 mm, BMA, BNC, MCX, MMCX, N, SMA, SMB, SMP, SSMP, TNC, UHF, etc
- Frequency: up to 110GHz

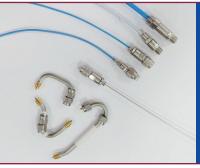
- Test cable assembilesFrom durable to VNA high precision series, many kinds of adapters, meet all
- the requirements of switching test
- Frequency: up to 110GHz
- Application: network analyzer test, RF conductor test, mobile phone production line test


RF test probes

- Multi-channel series
- Customization series
- Reliable quality

RF coaxial cable

- Main products: high frequency cable, amplitude and phase stable cable and test Railway cable etc.
- Frequency: 18GHz, 40GHz, 67GHz to 110GHz
- Support customization

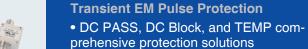


SLK PRODUCTS LIST >>>>

RF Cable assemblies

- Phase match & Stable
- Hybrid & Micowave
- Flexible
- Semi-flex and Semi-rigid
- Corrugated

Custom wiring harness


- Medical
- Semi-conductor
- Aerospace
- Automotive
- Industrial

Industrial/military/mixed connector

- MIL -DTL- 38999 series connector
- MS hybrid module combination connector
- Industrial connectors: M12 and M16, etc
- Push and pull self-locking connector

- Features: SLK TEMP protection core technology
- Applications: rail transit, radar, aircraft, military, wireless communications etc

07/08

APPENDIX

Company Profile 01
High Speed Signal Test Products and solutions 11
High Speed Signal Test Scenora 12
Products introduction 13
SPC Test Cable 14
Test Leads 17
PCB Solderless Connector 19
MRT Multichannel Connector 23

Provide The Most Effective Interconnect Solutions

High Speed Signal Test (Including Optical Module) >>>> Products And Solutions

Superlink can provide products and solutions in the field of high speed signal testing, used to test the impedance, return loss, attenuation, eye Diagram, error code, Time delay and other S parameters.

SPC Test Cable

Superlink is one of the few vertical integration ability in world, We have connector & cable with intellectual property rights, innovation design, production and processing ability, high precision assembly, precision welding process, to provide customers with high performance, high reliable products.

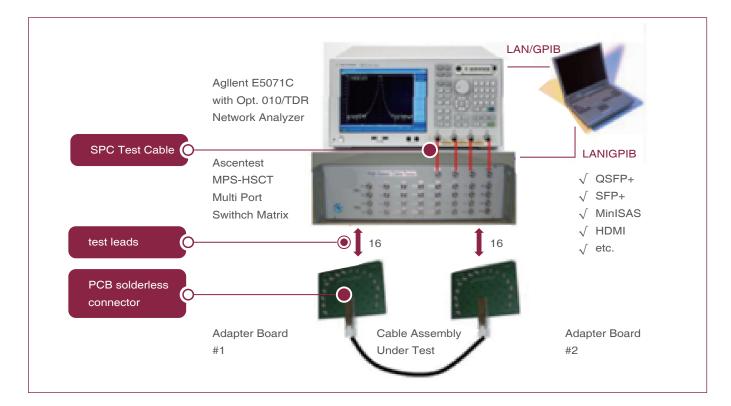
Test Leads

The self-innovated NBEND series can compete with the TFLEX series Mutiflex cable.Stable amplitude and phase, high cost performance,

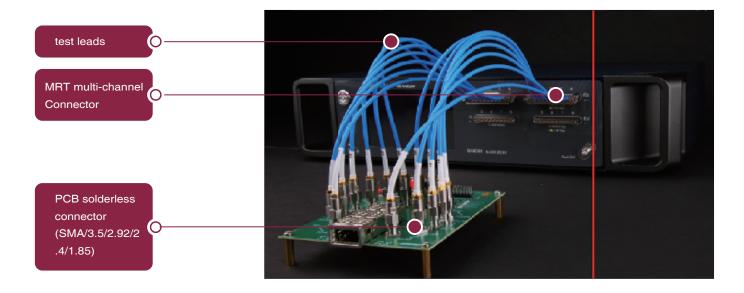
PCB Solderless Connector

Vertical/End Launch RF Connector, HFSS simulation, support microstrip, coplanar waveguide, stripline RF PCB.

MRT Multi-channel Connector


Self-developed innovative solution for high-speed signal testing, MRT multi-channel connector, frequency up to 67GHz;

1X4;2X4;1X8;2X8 standard series, solderless type, good isolation, low delay, return loss is better than competing products, can also be customized for customers



High Speed Signal Test Scenario


High-speed signal (DAC) test solution (SFP+/QSFP+/ QSFP-DD)

optical module test solution (SFP+/QSFP+/QSFP-DD)

Product Introduction- SPC Test Cable

The interconnection between the measured parts (mainly passive devices) and the test equipment is applied in the laboratory environment. The general requirements are steady amplitude and steady phase, low VSWR, repetitive operation, durability and other characteristics.

VA Series(with armor)

Product models number begin with VA

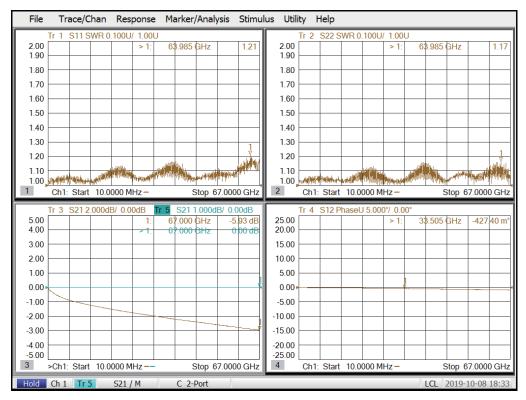
Up to 110GHz, Benchmarking with Phase Flex Series (CX/CN) The test life is more than 10000 times

Product models number begin with KN/K

KN Series (without armor) K Series (with armor)

Up to 26.5 GHz, Benchmark with Silverline Series; KN test life is more than 10000 times K series test life is more than 5000 times

Product Introduction-SPC Test Cable


VA Products Feature:

1. Up to 110 Ghz

2. Good bending fiexibillty

- 3. Stable amplitude and phase
- 4. Life up to 10,000 times

VA67 Test Result

VA Typical Specifications

VA (with armor)	VA26	VA40	VA50	VA67	VA110
MAX. Frequency	26.5GHz	40GHz	50GHz	67GHz	110GHz
recommend connector	SMA	2.92mm	2.4mm	1.85mm	1.0mm
armor diameter (mm)		6.0		5.0	4.0
Min. bending radius, static(mm)		25			17
Min. bending radius, repeated(mm)		60			25
Typical VSWR	1.12	1.2	1.22	1.25	1.30
MAX. VSWR	1.30	1.30	1.30	1.35	1.45
Typical Insertion Loss(dB/M)	2.34	2.91	3.28	6.02	13.8
Typical Phase Stability (degree)	±2°	±2.5°	±3°	±3°	±5°
MAX. Phase Stability (degree)	±5°	±5°	±6°	±5°	±8°
Typical Amplitude Stability (dB)	±0.02	±0.02	±0.03	±0.03	±0.05
MAX. Amplitude Stability (dB)	±0.05dB	±0.05dB	±0.05dB	±0.05dB	±0.10dB
Typical Flex Cycles		100	000		

When bent ± 90° at a radius that is twice the minimum repeated bend radius, test assembly performs reliably through the stated flex cycles.

Product Introduction-SPC Test Cable

K Series Product Feature:

1. Up to 26.5Ghz

2. Good bending fiexibillty

- 3. Stable amplitude and phase
- 4. Life up to 10,000 times

K Test Result

File	Trace/Chan	Response	Marker/Analysis	Stimulus	s Utilit	y He	elp					
	r 1 S11SWR					r2S	22 SWR 0.					
2.00 1.90		> 1:	22.460 GHz	1.22	2.00 1.90			> 1	: 22	2.228 GH	Z	1.20
1.80					1.80						_	
1.70					1.70							
1.60					1.60						_	
1.50					1.50						_	
1.40					1.40				_			
1.30			- 1		1.30							
1.20				nulati i	1.20						1	A
1.10			ANNERS NEW YORK		1.10	and the second secon	MAN AND AND AND AND AND AND AND AND AND A		i ^t eri u seterete States di tabi	Shephal th	and districts	
	Ch1: Start 10.		Stop 26.50	00 GHz			Start 10.00			Stor	26.5000) GHz
10.00 8.00 6.00	Tr 3 S21 Log	M 2.000dB/ 0.0	0dB					> 1:	26.	467 GHz	-2.7	0 dB
4.00												
2.00												
0.00												
-2.00												
-4.00												
-6.00					_							
-8.00 -10.00												
3	>Ch1: Start 1	0.0000 MHz —	-	1						Stop	26.5000	GHz
Cont. \	Ch 1 Tr 3	S21	C 2-Port						I	LCL 202	1-03-26	11:56

K Typical Specifications

	K(with armor)	
PVC ARMOR Diameter(mm)	11.0	
PUR ARMOR Diameter(mm)	10.2	
Stainless Steel ARMOR Diameter(mm)	10.0	
Min. bending radius, static(mm)	54	
Min. bending radius, repeated(mm)	108	
MAX. Frequency(GHz)	18GHz	26.5HGz
recommend connector type	SMA / N	SMA / 3.5mm
Typical VSWR	1.15	1.25
MAX. VSWR	1.20	1.30
Typical Insertion Loss(dB/M)	2.24	2.90
Typical Phase Stability (degree)	±3°	±5°
MAX. Phase Stability (degree)	±5°	±8°
Typical Amplitude Stability (dB)	±0.05	±0.07
MAX. Amplitude Stability (dB)	±0.08dB	±0.10dB
Typical Flex Cycles	10000	

When bent ± 90° at a radius that is twice the minimum repeated bend radius, test assembly performs reliably through the stated flex cycles.

Product Introduction-SPC Test Cable

KN Series Product Feature:

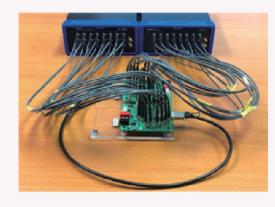
1. Up to 26.5Ghz;

2. Good bending flexibility;

- 3. Stable amplitude and phase;
- 4. High performance-price ratio

KN Test Result

File	Trace/Chan	Response	Marker/Analysis	Stimulus	Utility	Help				
	r 1 S11 SWR 0	.100U/ 1.00U				2 S22 S	WR 0.10	00U/ 1.00		
2.00 1.90		> 1:	22.295 GHz		2.00 1.90			> 1:	23.156 GH	z 1.22
1.80					1.80 -					
1.70					1.70			_		
1.60					1.60 —	_		_		
1.50					1.50 —	_		_		
1.40					1.40 -	_		_		
1.30 -					1.30 -			_		1
1.20				dil i	1.20 —			_		narriaklanika a
1.10		and the second	A CONTRACT OF	innaisean ha	1.10	rastikkelses s			a south the second second	nen en
	AND THE OWNER WAS ADDRESS.					1111111111				han constabilit
	Ch1: Start 10.0	000 MHz -	Stop 26.500	00 GHz 2	C	h1: Start	10.000	0 MHz –	Stop	26.5000 GHz
	Tr 3 S21 LogM	12.000dB/ 0.0	0dB							
10.00 8.00								> 1:	26.268 GHz	-2.73 dB
6.00										
4.00										
2.00										
0.00										
-2.00						_				1
-4.00										₩
-4.00										
-8.00										
-10.00										
3	>Ch1: Start 10	.0000 MHz —	-						Stop	26.5000 GHz
Cont 1	Ch 1 Tr 3	S21	C 2-Port							1-03-26 11:49

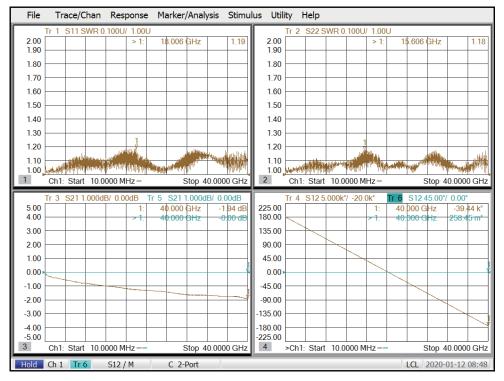

KN Typical Specifications

	KN (without armor)					
diameter (mm)	4	1.9				
Min. bending radius, static(mm))	2	20				
Min. bending radius, static(mm)	50					
MAX. Frequency	18GHz	26.5GHz				
recommend connector	SMA / N	SMA / 3.5mm				
Typical VSWR	1.15	1.25				
MAX. VSWR	1.20	1.30				
Typical Insertion Loss(dB/M))	2.24	2.90				
Typical Phase Stability (degree)	±3°	±5°				
MAX. Phase Stability (degree)	±5°	±8°				
Typical Amplitude Stability (dB)	±0.05	±0.07				
MAX. Amplitude Stability (dB)	±0.08dB	±0.10dB				
Typical Flex Cycles	50	00				

When bent ± 90° at a radius that is twice the minimum repeated bend radius, test assembly performs reliably through the stated flex cycles.

Product Introduction-Test Leads

Used for interconnection between RF port of high speed signal PCB test fixture and test instrument, or interconnection of test system

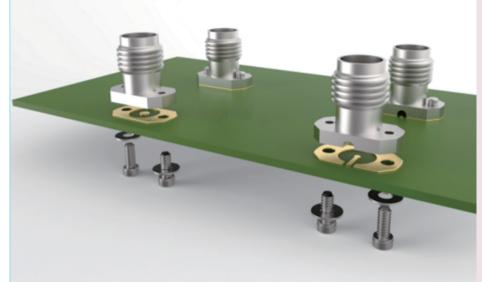

Product Featrues:

- Frequency: up to 67Ghz
- Bending phase (typical/maximum) ±2/±5°
- Bending stability (typical/maximum)±0.03/±0.10dB
- Low loss 2.8dB/m @26.5Ghz Nbend400)
- Low VSWR <1.2@40Ghz; <1.3@67Ghz

	Cable Type	TLL series	TLH series	Roadmap
Туре	F(GHz)	26.5GHz	40GHz	
SMA Male	26.5			
SMA Female	26.5			
3.5mm Male	26.5			
3.5mm Female	26.5			
2.92mm Male	40			
2.92mm R/A Male	40			
2.92mm Female	40			
2.4mm Male	50			Roadmap(21Q4)
2.4mm Female	50			Roadmap(21Q4)
1.85mm Male	60/70			Roadmap(21Q4)
1.85mm Female	60/70			Roadmap(21Q4)

Product Introduction-Test Leads

TLH Series Test Result



TLL Series Test Result

File	Trace/Chan	Response	Marker/Analysis	Stimul	us Utility	/ Help					
Г	Tr 1 S11SWR0	.100U/ 1.00U			Ti	r 2 S22 S	WR 0.100	J/ 1.00L	J		
2.00 1.90		> 1:	19.248 GHz	1.11	2.00 1.90			> 1:	23.851	GHz	1.16
1.80					1.80						
1.70					1.70						
1.60					1.60						
1.50					1.50						
1.40					1.40						
1.30					1.30						
1.20					1.20						
1.10	14.	ومر و بالفقة الاقتراب .		ality .	1.10						.5000 GHz
	N. The second second second	ANAL ARE ADDRESS AND			1.00	N, Parkin Martin		WYWWWWWW	INTERPORT	All	
1	Ch1: Start 10.0	000 MHz –	Stop 26.50	00 GHz	2 (Ch1: Start	10.0000	4Hz —		Stop 26	6.5000 GHz
Т	Fr 3 S21 2.000d	B/ 0.00dB T	r 5 S21 1.000dB/ 0	0.00dB	Ti	r 4 S12 1	0.00k°/ -30	.0k°	Tr 6 S12	5.000°/	0.00°
5.00		1:		3.55 dB	25.00			1:	26.500		-64.09 k°
4.00		>1.	26.500 GHz	0.02 dB	20.00			>1.	26.500	GHz	198.66 m°
3.00					15.00 <						
2.00					10.00						
1.00					5.00						
0.00				Ť	0.00						
-1.00		┥╼╌┼╌╌┼		1	-5.00						
-2.00					-10.00						
					-10.00 -15.00						
-2.00 - -3.00 - -4.00 -					-15.00 -20.00						
-2.00 -3.00 -4.00 -5.00	Ch1: Start 10.0	000 MHz	Stop 26.50	000 GHz	-15.00 -20.00 -25.00	Ch1: Start	10.0000 1	MHz		Stop 26	5.5000 GHz

Note: Compared with the similar competing products (T-Flex-405/402/047, mutiflex series),the TLL,TLH series test leads has better bending resistance and stable amplitude and steady phase index

Product Introduction - PCB Solderless Connector

Applications:

- RF PCB signal test
- High speed digital signal test
- Stripe line, microstrip line, coplanar waveguide line signal
 - testing.

Features:

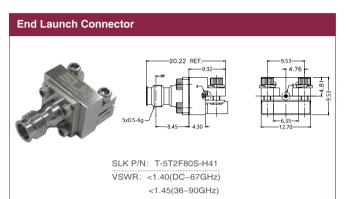
- Frequency up to 67GHz, Low VSWR, Low insertion loss;
- Solderless, simple installation, high efficiency test.
- Optional is Variety,
- SMA/2.92mm/2.4mm/1.85mm/1.35
- mm;

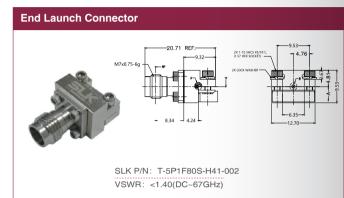

HFSS simulation optimization, can provide customers with simulation model and optimal footprint

SK

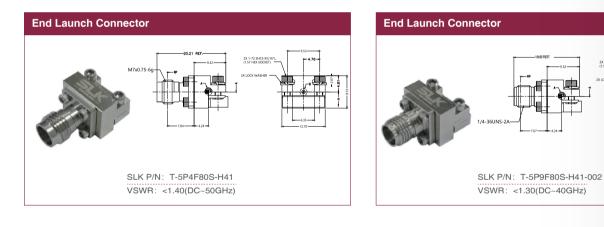
Product Introduction- PCB Solderless Connector

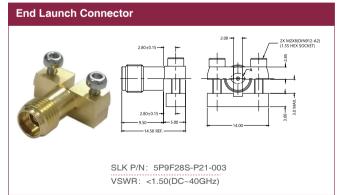
Typical Product S Parameter DEMO Test


note:Based on industry experience, the VSWR of a single PCB connector is the square root of the test result of the carrier

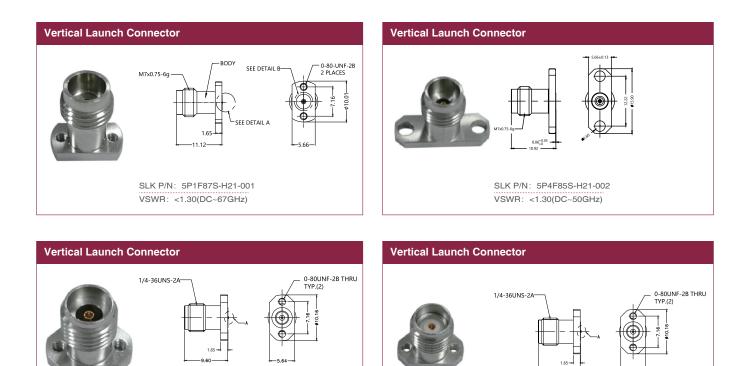

Typical Specification

	SMA	2.92mm	2.4mm	1.85mm		
Attributes	PLU JAC	PLU JAC	PLU JAC	PLU JACK		
Frequency	G 26.5GK	G 40G K	G 50G K	G 67G		
Impetannce	50Ω(typical)					
Insertion loss	0.05√F	0.05√F	0.05√F	0.05√F		
VSWR typical /maximum	1.2	1.3	1.3	1.4		


Product Introduction


End Launch Connector

2X 1-72 SHCS X5/16 (1.57 HEX SOCKET) =



SLK RF Test Probe

Vertical Launch Connector

SLK P/N: 5P9F25S-H21 VSWR: <1.30(DC~40GHz) SLK P/N: 5MAF87S-H21-003 VSWR: <1.3 (DC~27GHz)

Product Introduction- MRT Multichannel Connector

Application:

- 1. Automatic test equipment;
- 2. High-speed signal test and measurement field;

- 3. High-speed digital chip verification test
- 4. Laser module testing.

Features:

No soldering, simple installation, high efficiency testing;
 High density pitch (2.54mm/ 4mm optional), 1X4, 2X4,

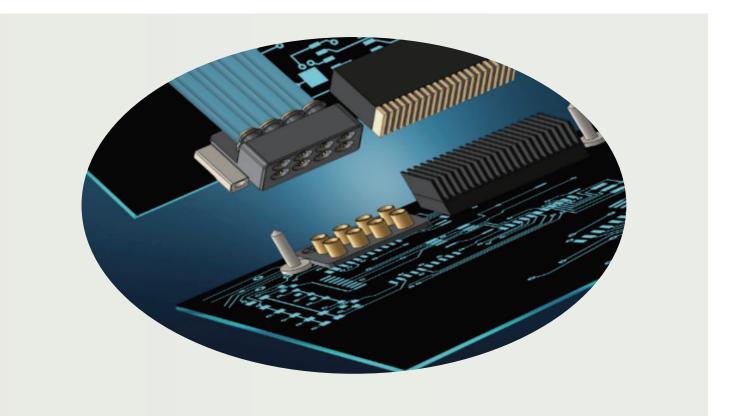
1X8,2X8 standard products;

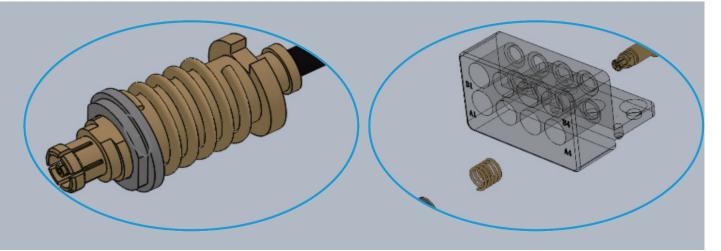
- 3. High repeatability;
- 4. Match for .047 cable or 086 cable;

5. Frequency up to 67GHz, support 112Gbps high-speed signal test;

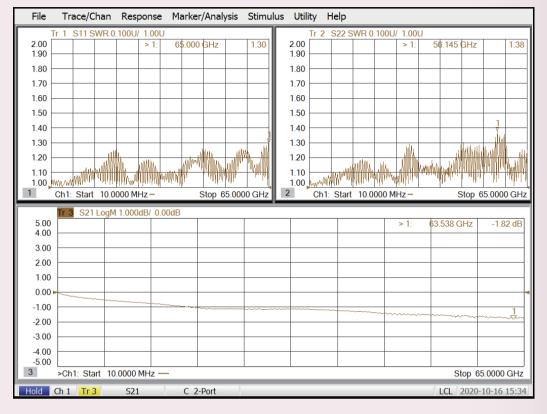
6. Each cable time delay is less than 2ps;

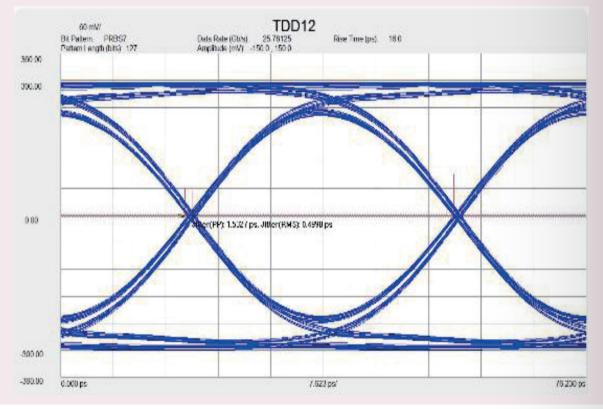
7. HFSS signal simulation optimization, VSWR excellent performance;


8. Compared with competing product, has high performance-price ratio



Product Introduction - MRT Multichannel Connector


Mixed with power , signal and others interfaces


Single channel removable

S Parameter Test Result

Eye Diagram Test Result

25/

Shenzhen Superlink Technology Co.,Ltd.